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1 Installing and starting Jets

The distribution consists single file Jets.s. To install Jets proceed as follows:

1. Start a fresh Maple session.

2. Read in the file Jets.s, which contains the source code of all procedures. There should be
the following output on the screen:

JETS 4.9

Differential calculus on jet spaces and diffieties

for Maple V Release 4

as of 18 December 2003

Blimit = 25000 ressize = 500 putsize = 40 maxsize = 20

If only the first line, JETS 4.9, is printed, then Maple for your platform uses different
end-of-line characters. Please, open Jets.s in an editor and fix the problem.

If error messages are produced, then your copy of the file is corrupted and should be
replaced.

2 Variables

For unexplained notions from the geometry of partial differential equations (jets, diffieties, etc.)
see [8]. For unexplained Maple commands consult the online help to Maple.

Most of the procedures will not work until base and fibre variables (coordinates on the
underlying fibred manifold) are specified by using the command coordinates. Contrary to
version 3.9, there are no default settings.

To introduce two base variables, x, t and a single fibre variable u, enter

> coordinates([t,x], [u], 5);

I, u_5t, u_4t_x, u_tttxx, u_ttxxx, u_t_4x, u_5x, u_4t, u_tttx, u_ttxx,

u_txxx, u_4x, u_ttt, u_ttx, u_txx, u_xxx, u_tt, u_tx, u_xx, u_t, u_x

As a side effect, this command creates aliases for jet variables (coordinates on the jet space) up
to the order given by the last argument (five in this example). See the Maple help for explanation
of what is an alias.

When in doubts, one can judge as follows: To have, say, the eighth-order jet variable v8y at
one’s disposal, v must be a fibre variable, y must be a base variable, and the last argument must
be at least eight; the declaration then may be, e.g., coordinates([x,y],[u,v],10).

Creation of aliases is only possible when names given to base variables are strings, i.e., not
indexed. Indexed fibre variables are allowed (try and see what happens). The creation of aliases
is suppressed when the third argument is omitted.
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There is no upper bound on the number of base and fibre variables. Every new declaration
overrides the former.

Internally, jet variables are represented as unevaluated calls to the procedure jet. For ex-
ample,

> jet(u,t);

u_t

The output is the name u_t that has been aliased to the expression jet(u,t). For higher order
jets one has likewise

> jet(u,x^3*t);

u_txxx

> jet(u,x^4*t);

u_t_4x

The rule is that more than triple repetition of a base variable is indicated by a numeric coefficient
and separated by underscores. Needless to say, one should normally input jet variables as the
aliases, e.g., u_t, u_txxx, u_t_4x.

Jet variables for which no aliases were created appear in their internal representation. This
has no impact on the validity of results. To create missing aliases, reinsert the coordinates

command with the third argument sufficiently high.
Be careful to input your variables in exactly the same form as they appear in the output

of the coordinates command. E.g., if u tx is aliased, then u xt is not . (The name u xt then
represents a function of unassigned dependence.)

In the above inputs, expressions like x^3*t are counts. Counts are traditional for the differ-
ential calculus (cf. ∂4u/∂x3∂t), so there should be no confusion. Maple handles them by the fast
multiplication routines of its kernel. Formally, a count is an element of the free commutative
semigroup over the set of variables.

3 Total and partial derivatives

Total derivatives are named TD in Jets. The procedure TD accepts the same counts as jet does
(see above) but is not prettyprinted. E.g.,

> TD(f,x); TD(f,x^3*t);

TD(f, x)

3

TD(f, x t)

are total derivatives Dxf and Dtxxxf of a function f . Any name different from names of base and
fibre variables (and names special to Jets and Maple) is regarded as a name of a differentiable
function.

Unlike jet, total derivatives TD are true differentiations and accept any algebraic expression
as the first argument. They are linear, and satisfy the Leibniz rule as well as the chain rule:
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> TD(f + g, x);

TD(f*g, x);

TD(sin(f), x);

TD(f, x) + TD(g, x)

TD(f, x) g + f TD(g, x)

cos(f) TD(f, x)

Jets does not automatically evaluate total derivatives of functions since typically they are
huge expressions carrying rather tiny portion of useful information. This is especially true for
higher order total derivatives.

However, when appropriate, the evaluation of total derivatives can be forced:

> dependence(f(t,x,u,u_x));

evalTD(TD(f,x));

f = {x, u_x, t, u}

/d \ /d \ / d \

|-- f| + |-- f| u_x + |---- f| u_xx

\dx / \du / \du_x /

The first command declares f as a function depending on t, x, u, ux only. Without such a declara-
tion, evalTD would have no effect. To declare a constant c, one can say either dependence(c())
or simply parameter(c).

The output of the second command involves partial derivatives. Partial derivatives are input
as follows:

> pd(g,x*u_x^2);

3

d

-------- g

2

du_x dx

Observe that partial derivatives admit counts composed of jet variables.
Partial derivatives are our main tool to investigate expressions in total derivatives. Actually,

partial derivatives of total derivatives can be evaluated without evaluating the latter. Typical
examples are (f is assumed to depend on t, x, u, ux):

> pd(TD(f,x),u_xx);

d

---- f

du_x

The output may contain another total derivative:

> pd(TD(f,x),u_x);

d /d \

TD(---- f, x) + |-- f|

du_x \du /
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(cf. the evaluated Dxf above).

> pd(TD(f,x^2),u_xx);

d /d \

2 TD(---- f, x) + |-- f|

du_x \du /

4 Conversions

It is often desirable to make a substitution for a fibre variable. For instance, let us verify that a =
2k sech2(

√
k(x+4kt)) is a solution of the KdV equation ut = uxxx+6uux (the famous soliton solu-

tion), k being an arbitrary constant. One cannot say subs(u = a, -u_t + u_xxx + 6*u*u_x),
since the procedure jet requires its first argument to be a fibre variable, and therefore expres-
sions like jet(a,x) do not make sense. Instead one should apply the procedure convert with
TD as the second argument:

a := 2*k*(sech((k)^(1/2)*(x + 4*k*t)))^2;

dependence (k()):

T := convert(-u_t + u_xxx + 6*u*u_x, TD, u = a):

simplify(T);

0

The procedure effectively replaces u with a, jet(u,x) with TD(a,x), etc. A much more powerful
comand transform is described in one of the following sections.

With the second argument diff instead of TD, the same procedure convert replaces Jets’
partial derivative pd with the standard Maple derivative diff:

> dependence(a(x,u,u_x,u_xx));

a = {u_xx, u_x, u, x}

> convert(a*pd(a,u_x^2*u_xx), diff, u_x = u1, u_xx = u2);

/ 3 \

| d |

a(u1, u2, u, x) |-------- a(u1, u2, u, x)|

| 2 |

\du2 du1 /

Here the additional arguments indicate a substitution to be applied to jet variables (recall that
jet variables are unevaluated function calls while diff requires the indeterminates to be names).
Expressions obtained this way are ready for use in standard Maple procedures, e.g., dsolve and
pdesolve.

The last type of conversion we consider in this section is performed automatically any time
an expression is prettyprinted. Namely, the standard Maple procedure print has been instructed
to convert pd to Diff, which is an inert (unevaluated) differentiation in Maple. This explains
why Jets’ partial derivatives are prettyprinted.

But Diff has also been redefined. Recall that if the display option is set to “typeset notation,”
then one can copy and paste an output into the input area to get a syntactically correct input
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essentially of the same meaning (although sometimes in the inert form). With Diff redefined to
pd, the copy-and-paste feature of Maple works with pd as well.

> Diff(a,u_x,u_x,u_xx) - pd(a, u_x^2*u_xx);

0

5 Diffieties

A computation dealing with, say, the KdV equation should start with the declaration

> equation (u_t = u_xxx + 6*u*u_x);

This command accepts any number of arguments separated by commas. Every new equation

overrides the former. It may be necessary to use quotes to prevent evaluation on the left hand
side:

> equation (’u_t’ = u_xxx + 6*u*u_x);

It is also possible to remove any previous equation completely:

> equation ();

Every equation must be resolved with respect to a leading derivative qX . This means that neither
qX nor either of its derivatives qXY occurs on the right-hand side. For example, ut and uxxx
are leading derivatives of the KdV equation ut = uxxx + 6uux, while ux is not, since uxxx is
forbidden on the right hand side of ux = (ut − uxxx)/6u.

After an equation is introduced, certain jet variables obtain values:

> u_t;

u_xxx + 6 u u_x

> u_tx;

2

u_4x + 6 u_x + 6 u u_xx

> u_tt;

2 2 2

u_6x + 18 u_xx + 30 u_x u_xxx + 12 u u_4x + 72 u u_x + 36 u u_xx

Actually, these are results returned by the procedure jet (recall that the above inputs are
equivalent to invoking jet(u,t), jet(u,t*x),jet(u,t^2), respectively).

By giving more than one argument, systems of PDE are introduced. In that case, for jet to
give correct (unique) results, the system must be passive, which roughly speaking means that
there must be no non-trivial integrability conditions resulting from the system and its differential
consequences (see. [6]).

The complexity of the expressions grows dramatically with the jet order. This is why com-
puted values are (transparently to the user) stored in a table and then retrieved rather than
recomputed every time when needed. The table is emptied automatically when a new equation
is introduced.

However, if the right hand side of an equation depends on a function f and the function f
is changed, then it is the user who must take care of refreshing the table.

For example:
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> dependence(f(x,u));

f = {x, u}

> equation(’u_t’ = u_xxx + f*u_x);

u_t = u_xxx + f u_x

> u_tx;

/d \ /d \ 2

u_4x + u_x |-- f| + |-- f| u_x + f u_xx

\dx / \du /

Now we make an assignment to f :

> f := x*u;

f := x u

Then the jet variables will keep their previous values

> u_tx;

/d \ /d \ 2

u_4x + u_x |-- f| + |-- f| u_x + f u_xx

\dx / \du /

unless explicit evaluation is invoked

> eval(u_tx);

2

u_4x + u_x u + x u_x + x u u_xx

or the command refresh is invoked to reevaluate the table.

> refresh();

> u_tx;

2

u_4x + u_x u + x u_x + x u u_xx

6 Linear equations in total derivatives. Symmetries of KdV

In this section we introduce our first concrete example: computation of fifth-order symmetries
of the KdV equation. As usual, the KdV equation is introduced as

> equation(’u_t’ = u_xxx + 6*u*u_x);

u_t = u_xxx + 6 u u_x

Symmetries (more precisely, their generating functions U) are solutions of the determining equa-
tion S = 0 where S is the universal linearization operator:

> S := symmetries(u = U);

3

S := TD(U, t) - 6 U u_x - TD(U, x ) - 6 TD(U, x) u
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(U corresponds to the fibre variable u, as indicated by the argument u = U .) The PDE is always
given by the last equation command.

Likewise, the determining equation for generating functions of conservation laws is L = 0
where

L := laws(1 = V);

3

L := -TD(V, t) + TD(V, x ) + 6 u TD(V, x)

(V denotes the unknown corresponding to the first equation, as indicated by the relation 1 = V .)
In general, determining equations are equations in total derivatives. Those for symmetries and

conservation laws are linear, but Jets allows one to solve nonlinear equations as well. Nonlinear
are, e.g., determining systems for coverings and zero-curvature representations.

Jets’ mission is solving the equations in total derivatives, linear or nonlinear. The solution
process repeats two steps:

(1) deriving simple differential consequences;
(2) resolving and back-substituting simplest of them;

until the input expressions become zero. Essentially, both steps can be automated.
Turning back to our example, we need to solve the equation S = 0 for U . As a smooth

function, U can depend only on a finite number of variables, i.e., there must be an upper bound
on the jet order of U . Assume that the bound is five. A fifth-order generating function is one that
depends on x, t, u, ux, . . . , u5x. Accordingly, our assumption is made known to the computer as
follows:

> dependence(U(x,t,u,u_x,u_xx,u_xxx,u_4x,u_5x));

U = {t, x, u, u_x, u_xx, u_xxx, u_4x, u_5x}

To run in automatic regime, Jets also needs to know what are the unknowns:

> unknowns(U);

U

Now launch the computation:

> run(S);

<0> Put:

2

d

------ U = 0

2

du_5x

<1> Put:

2

d

----------- U = 0

du_5x du_4x
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<1> Put:

2

d

------------ U = 0

du_5x du_xxx

etc. The report lines have the syntax

<elapsed time> Put:

The centered formulas following every report line are assignments to partial derivatives, to be
explained below.

The whole computation takes 49 such steps and ends with

<77> Put:

d /d \ /d \ 2 / d \

-- U = 6 U u_x + 3/2 |-- U| u_xxx + 3 |-- U| u_x u - 6 u_x |---- U|

dt \du / \du / \du_x /

/ d \ / d \

- 6 u_x u_5x |----- U| - 30 |----- U| u u_x u_xxx

\du_5x / \du_5x /

2 / d \ / d \

- 15 u_xxx |----- U| - 15 u_x u_xxx |------ U|

\du_5x / \du_xxx /

/ d \ 2

- 18 |------ U| u u_x

\du_xxx /

<79> Success!

To retrieve the results, on should proceed as follows.

> dependence();

{U(t, u_5x, u_x, u_xx, u, u_xxx, x)}

The result shows what jet variables do the symmetry generators depend on (in our case, all but
u4x). Then invoke the command clear(pds)

> Z := clear(pds);

2 2 2 2

d d d d

Z := {------ U, ------- U, ------------ U, ----------- U,

2 2 du_5x du_xxx du_xxx du_x
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du_5x du_xxx

/ 2 \ / 2 \

| d | / d \ | d | / d \

|------- U| - 6 |------ U|, |--------- U| - 10 |----- U|,

\du_x du / \du_xxx / \du_xxx du / \du_5x /

...

Here Z = {Zi} is a set of expressions, which we have truncated because of its rather big size.
The meaning is that the unknown U must satisfy differential equations Zi = 0. The command
also removes all assignments to partial derivatives (otherwise Z would be a set of zeroes). This
is why clear(pds) should not be called repeatedly.

The equations Zi = 0 must be solved by hand, keeping in mind that the integration “con-
stants” depend on the “remaining” variables. In our example, the ODE ∂2U/∂u25x = 0 is imme-
diately solved as U = U1u5x +U0, where Ui are arbitrary functions which do not depend on u4x,
because U did not, and on u5x, as u5x was the independent variable of the ODE in question.

> U := U1*u_5x + U0;

> dependence(U1(t,x,u,u_x,u_xx,u_xxx), U0(t,x,u,u_x,u_xx,u_xxx));

U := U1 u_5x + U0

U1 = {t, x, u, u_x, u_xx, u_xxx}, U0 = {t, x, u, u_x, u_xx, u_xxx}

The next step may be

> map(expand, Z);

which shows all the equations after the assignment U = U1u5x + U0; or better

> map(expand@pd, Z, u_5x);

which gives the (more substantial) equations that arise as coefficients at u5x; or even better

> unknowns(U1,U0):

> run(Z);

...

> dependence();

U1 = {}, U0 = {t, u, u_x, u_xx, u_xxx, x}

> Z := clear(pds);

2 2 2

d d d

Z := {----- U0, ------- U0, ----------- U0,

2 2 du_xxx du_x

du_x du_xxx

/ 2 \ / 2 \
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| d | / d \ |d |

|------- U0| - 6 |------ U0|, |--- U0| - 60 U1 u_x,

\du_x du / \du_xxx / | 2 |

\du /

/d \ 2 / d \ /d \

|-- U0| + 5 u_x u_xxx U1 + 3 u_x |------ U0| - 1/2 u_x |-- U0|,

\dx / \du_xxx / \du /

/ 2 \

| d | / d \

|--------- U0| - 10 U1, |----- U0| - 20 U1 u_x,

\du_xxx du / \du_xx /

...

Prior to the new run, one must not forget to declare the new unknowns U1, U0 (in this order,
since U0 depends on a larger set of variables than U1 does).

We highly recommend that the reader performs the whole computation. Omitting details,
we state the final answer that 5th order symmetries of KdV are

U = 1
6a2 + 1

9a4u

+ (a1 + a2t+ 1
18a4x+ (a3 + a4t)u+ a5u

2)ux (1)

+ 2
3a5uxuxx + (16a3 + 1

6a4t+ 1
3a5u)uxxx + 1

30a5u5x,

where a1, a2, a3, a4, a5 are constants. This means that the Lie algebra of 5th order symmetries
is five-dimensional, with basis formed by

U1 = ux,

U2 = 1
6 + tux,

U3 = uux + 1
6uxxx,

U4 = 1
9u+ ( 1

18x+ tu)ux + 1
6 tuxxx,

U5 = u2ux + 2
3uxuxx + 1

3uuxxx + 1
30u5x.

The Jacobi bracket (the commutator of symmetries in terms of their generating functions) is
computed by the procedure Jacobi. Its two arguments are the generating functions formatted
as lists of expressions. E.g.,

> Jacobi([u_x], [1/6 + t*u_x]);

[0]

> Jacobi([u_x], [u*u_x + 1/6*u_xxx]);

[0]

> map(expand, Jacobi([1/6 + t*u_x], [u*u_x + 1/6*u_xxx]));

[1/6 u_x]
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In case of systems of equations, the ordering of the lists is determined by the order in which the
corresponding fibre variables appeared in the coordinates declaration.

Obviously, run can work reliably only if it recognizes zero. An expression f is considered zero
if and only if the output of simpl(f) is 0, where the default definition of simpl(f) is normal(f).
Under this definition, simpl reliably recognizes zero in the domain of rational functions, which
was the case with the KdV equation. In other domains, simpl should be redefined appropriately.

7 Deriving differential consequences

Here we explain how run performs the step (1): deriving the simplest differential consequences.
We use the KdV example of the preceding section.

An expression S in total derivatives is better kept unevaluated as long as possible (if in
doubts, try evalTD(S)). So, instead of evaluating S, we use partial differentiation: if S is zero,
then all derivatives of S are zero as well. It is then important to know what variables does S
depend on.

> coordinates([t,x],[u],8);

vars(S);

{t, u_6x, x, u, u_7x, u_8x, u_xxx, u_xx, u_4x, u_5x, u_x}

(the first command creates the aliases u6x, u7x, and u8x). Among these variables, u8x is of highest
order. When differentiating S with respect to u8x, one may expect that the result will be a rather
simple expression. And indeed,

> pd(S,u_8x);

0

which shows that S is actually independent of u8x (all occurrences of u8x would cancel out under
evalTD and proper simplification). The next variable in row is u7x:

> T := pd(S,u_7x);

d

T := - 3 TD(----- U, x)

du_5x

This result can be further processed in the same way. One easily checks that T depends on u6x
at most, and then the derivative

> pd(T,u_6x);

/ 2 \

| d |

- 3 |------ U|

| 2 |

\du_5x /

gives the first meaningful piece of knowledge: ∂2U/∂u25x = 0 (i.e., U linearly depends on u5x).
This explains the first intermediate result run reported about (see the preceding section):
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> run(S);

1. <1> Put:

2

d

------ U = 0

2

du_5x

In fact, run makes an assignment ∂2U/∂u25x := 0. Assignments to partial derivatives will be
discussed in one of the following sections.

The algorithm to automate derivation of differential consequences is implemented as the
procedure derive (which is one of the subroutines called by run):

derive(S);

/ 2 \

| d |

- 3 |------ U|

| 2 |

\du_5x /

The procedure derive recursively computes derivatives of the input expression and returns
nonzero expressions of minimal size. More precisely, derive stops if the subsequent derivative
either vanishes or fails to decrease the size. By default, size(f) is the number of unknowns and
their derivatives f depends on plus length(f)×10−9. Hence, minimal expressions are those with
the minimal number of unknowns, with ties broken by length.

Deriving will work (produce a result in finite time) if size(f) returns a nonnegative integer
for any input expression f .

In order to keep the space and time complexity low, every step in the derivation process uses
only the highest-order jet derivatives the input expression depends on. Therefore, derivation is
in fact restricted to maximal elements of the set of jet variables ordered as follows:

uX < vY ⇔ u = v and X divides Y

(divisibility of counts in the obvious sense). After maximal elements are exhausted, the procedure
continues with maximal elements among the remaining variables, etc.

Still there may exist maximal jet variables e that produce a large expression ∂S/∂e. Nonlocal
variables of coverings are typical examples. Fortunately, these variables can be safely excluded
from derivation since the derivative ∂S/∂e would be left unused anyway. To exclude certain fibre
variables from derivation (along with all jet variables they generate), use

noderive(list of fibre variables);

8 Assignments to partial derivatives

Equations produced by derive do not always allow for explicit solution. However, very often
these expressions can be simply resolved with respect to one of the leading derivatives and then
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used as substitutions. Example: instead of trying to solve the PDE ∂2U/∂u2x + ux ∂U/∂u = 0
we may routinely introduce the substitution ∂2U/∂u2x = −ux ∂U/∂u.

Jets provide a procedure put to make assignments to partial derivatives that propagate to
all differential consequences. For instance:

> put(’pd(U,u_x^2)’ = -u_x*pd(U,u));

> pd(U,u_x^2);

/d \

-u_x |-- U|

\du /

> pd(U,u_x^3);

/ 2 \

/d \ | d |

-|-- U| - u_x |------- U|

\du / \du du_x /

Another example: Resolving the famous Cauchy–Riemann conditions

∂U/∂u = ∂V/∂v, ∂V/∂u = −∂U/∂v,

via the pair of substitutions

> put(’pd(U,u)’ = pd(V,v), ’pd(V,u)’ = -pd(U,v));

produces the Laplace equation ∂2U/∂u2 + ∂2U/∂v2 = 0 effortlessly:

> pd(U,u^2);

/ 2 \

|d |

-|--- U|

| 2 |

\dv /

The behaviour of put is quite similar to that of equation. Again, substitutions are stored
in a table. One exception is that a substitution of the form pd(U,u) = 0 will result in the mere
change of the dependence record of U in case it exists. Another exception is that a substitution
of the form U = f will result in the direct assignment U := f.

There are two obvious sources of problems if put is used arbitrarily. Firstly, substitutions can
form vicious circles, generating stack overflows. The standard way to avoid them is explained in
the next chapter.

Secondly, substitutions can contradict one another, generating chaotic and session-dependent
results. For instance, the above Cauchy–Riemann conditions can be alternatively resolved as

> put(’pd(V,v)’ = pd(U,u), ’pd(V,u)’ = -pd(U,v));

Then the input

> pd(V,u*v);

will produce either
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2

d

--- U

2

du

or

/ 2 \

|d |

-|--- U|

| 2 |

\dv /

depending on whether it resulted from the first or the second substitution. Such questions are
addressed by the formal integrability theory of systems of PDE’s. For simplicity, Jets performs
only the standard cross-derivative checks:

> pd(pd(V,v),u) - pd(pd(V,u),v);

/ 2 \ / 2 \

|d | |d |

|--- U| + |--- U|

| 2 | | 2 |

\du / \dv /

(which is another way of obtaining the Laplace equation). To ensure uniqueness of substitutions,
all cross-derivatives must be balanced, i.e., non-zero expressions resulting from cross-derivatives
must be resolved and the results substituted back again. In this way, substitutions force other
substitutions, e.g.,

> put(’pd(U,u^2)’ = -pd(U,v^2)):

There is a procedure cc() which computes the compatibility conditions:

> cc();

{}

This output shows that all cross-derivatives have been already balanced.
A nonempty set of compatibility conditions returned by cc need not be resolved immediately.

May be postponed, e.g., to see whether the subsequent derive does not produce a condition
simpler to resolve.

Once all cross-derivatives are balanced, it is possible to reduce the table by eliminating all
derivatives that are derivatives of the others:

reduce();

2 / 2 \

d d d /d \ d |d |

-- V = -- U, -- V = -|-- U|, --- U = -|--- U|

dv du du \dv / 2 | 2 |

du \dv /
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9 Avoiding vicious circles

Suppose we want to resolve the equation ∂U/∂u = ∂2U/∂u2 with respect to one of the par-
tial derivatives. Obviously, the substitution ∂U/∂u → ∂2U/∂u2 will induce a vicious circle of
substitutions

∂U/∂u→ ∂2U/∂u2 → ∂3U/∂u3 → ∂4U/∂u4 → · · ·

Not so the inverse substitution ∂2U/∂u2 → ∂U/∂u, which therefore presents the only acceptable
way to resolve the equation.

Standard methods to avoid vicious circles use special orderings ≺ of partial derivatives. By
a partial derivative we mean an expression pd(U,X) where U is a function and X is a count
over some set of variables. Functions themselves are regarded as partial derivatives with X = 1.
The orderings should satisfy

P ≺ ∂P

∂s
(2)

and

Q ≺ P ⇒ ∂Q

∂s
≺ ∂P

∂s
(3)

for all partial derivatives P,Q and every variable s. Given such an ordering, one imposes the
rule that

in every substitution P → σ, the expression σ
involves only derivatives Q satisfying Q ≺ P .

(4)

Then it is easy to prove that if substitutions satisfy the rule (4), then every composition of
substitutions and every differential consequence of a substitution satisfy the same rule (4). [Prove
as an exercise. Hint: A differential consequence of the rule P → σ is the rule

∂P

∂s
→
∑
Q

∂σ

∂Q
· ∂Q
∂s

,

where Q runs over all partial derivatives occurring in σ.]
Substitutions satisfying rule (4) cannot produce vicious circles. Every string of substitutions

will eventually arrive to a “minimal state” where no further substitution can be applied.
Orderings that satisfy conditions (2), (3) can be introduced as follows. First we need a

workable ordering ≺var of variables.

1. x ≺var u for every base variable x and every fibre variable u;

2. u ≺var uX for every fibre variable u and every count X;

3. given an ordering ≺b of base variables and an ordering ≺f of fibre variables, we have
uX ≺var vY if

(degree) the degree of the count X is less than the degree of the count Y ;

with ties broken by

(function) u ≺f v;

with ties broken by

(count) under the ordering ≺b, the greatest variable that occurs in Y/X has a positive
exponent.
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By default, the orderings ≺b and ≺f are those introduced by the coordinates command. Al-
ternative orderings ≺var are obtained by changing the order in which criteria degree, function,
count are applied (obviously, after count there is no room for degree). E.g., the ordering gov-
erned by the succession function, degree, count, is introduced by

varordering(function,degree,count);

Having defined an ordering of variables, one obtains an ordering of partial derivatives when
replacing ≺f with any ordering ≺fun of functions and ≺b with any ordering ≺var of variables.

In Jets, the ordering ≺fun is determined by the particular order the functions are declared
with unknowns. The ordering ≺var is that introduced above. The command to change the suc-
cession of criteria is Varordering. The default is Varordering(function,degree,reverse),
where reverse means count with respect to the ordering reverse to the ordering of variables.
The orderings just constructed are linear (every two elements are comparable).

In general, computations in automatic regime incline to expression swell. The predisposition
to produce memory overflow is minimal if the Varordering declaration starts with degree.

However, in the presence of two or more unknowns, it is often desirable to obtain the resulting
system Z in a “triangular” form. It is then possible to solve the equations on the first unknown
first; then, knowing explicit expression for the first unknown, to solve the equations on the second
unknown, etc. Triangular form is produced if the ordering options start with function. To select
expressions from a set Z that involve only unknowns from a set A, call unksselect(Z,A).

To obtain the triangular form while avoiding expression swell, two runs should be per-
formed: first run(S) with respect to the ordering by degree,function,reverse, followed by
Z := clear(pds), and then run(op(Z)) with respect to function,degree,reverse.

10 Classification problems

Another example, taken from [9, 8.1.5], is

> equation(’u_t’ = f*u_x + u_xx):

> dependence(f(u)):

Here the right-hand side of the equation depends on u via an unknown function f . In loc. cit.
authors solve the following problem: how does the symmetry algebra depend on f . Cases 1--5
found in the book will be reconstructed below. The universal linearization is

> S := symmetries(u = U);

/d \ 2

S := TD(U, t) - TD(U, x) f - U |-- f| u_x - TD(U, x )

\du /

Assuming

> dependence(f(u), U(t,x,u,u_x,u_xx));

we soon get the following output:
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<10> linear resolving failed for pd(U,x*u_x)

/ 2 \ / 2 \

/d \ | d | / d \ |d | /d \ /d \

|-- f| |------- U| = -|---- U| |--- f| u_x + |-- U| |-- f|

\du / \du_x dx / \du_x / | 2 | \du / \du /

\du /

/ 2 \ // 2 \ \

|d | ||d | /d \2 | / d \

+ U |--- f| - ||--- f| u_xx + |-- f| u_x| |----- U|

| 2 | || 2 | \du / | \du_xx /

\du / \\du / /

FAIL

This means that Jets is about to solve a linear equation on ∂2U/∂u ∂ux with leading coefficient
∂f/∂u, but lacks information that the leading coefficient is nonzero.

In such cases, Jets is expecting an instruction from the user. If there is more than one possible
continuation, then it is recommended to fork the computation: to save the worksheet, make one
more copy, and continue them separately. The current status of the computation can be stored
in a file; see the command store below, and then input into another session.

1. When ∂f/∂u = 0, we say put(’pd(f,u)’ = 0) and continue. The result will be that of
Case 5 in the loc. cit.

When ∂f/∂u 6= 0, we instruct Jets about this fact as follows:

> nonzero(pd(f,u));

d

{-- f}

du

Continuing, we rather quickly get another condition:

<9> linear resolving failed for pd(U,u)

/ 2 \

/d \ |d | /d \

-|-- U| |--- f| |-- f| =

\du / | 2 | \du /

\du /

/ / 3 \ / 2 \2\ / 2 \2

| |d | /d \ |d | | / d \ |d |

-|u_x |--- f| |-- f| - u_x |--- f| | |---- U| - U |--- f|

| | 3 | \du / | 2 | | \du_x / | 2 |

\ \du / \du / / \du /
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/ 3 \

|d | /d \

+ U |--- f| |-- f| -

| 3 | \du /

\du /

/ / 2 \ / 3 \ / 2 \2 \

|/d \2 |d | /d \ |d | |d | |

||-- f| |--- f| u_x + |-- f| |--- f| u_xx - |--- f| u_xx|

|\du / | 2 | \du / | 3 | | 2 | |

\ \du / \du / \du / /

/ d \

|----- U|

\du_xx /

FAIL

Now we choose between ∂2f/∂u2 zero and nonzero.

2. The first choice leads to Case 4 of loc. cit.

The alternative leads to:

<19> linear resolving failed for pd(U,x)

/ / 3 \ / 2 \2\ / 2 \

| |d | /d \ |d | | |d | /d \ /d \

|-|--- f| |-- f| + 2 |--- f| | |--- f| |-- f| |-- U| =

| | 3 | \du / | 2 | | | 2 | \du / \dx /

\ \du / \du / / \du /

/ / 3 \ / 2 \2\2

| |d | /d \ |d | | 2 / d \

-|-|--- f| |-- f| + 2 |--- f| | u_x |---- U|

| | 3 | \du / | 2 | | \du_x /

\ \du / \du / /

/ / 3 \ / 2 \2\2

| |d | /d \ |d | | / d \

- |-|--- f| |-- f| + 2 |--- f| | u_x u_xx |----- U|

| | 3 | \du / | 2 | | \du_xx /

\ \du / \du / /

/ / 3 \ / 2 \2\2

| |d | /d \ |d | |

+ |-|--- f| |-- f| + 2 |--- f| | U u_x

| | 3 | \du / | 2 | |
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\ \du / \du / /

FAIL

Now
∂3f

∂u3
· ∂f
∂u
− 2

(
∂2f

∂u2

)2

(5)

is either zero or nonzero.

3. In the first case, f := c1 ln(u+ c2) + c3, where c1, c2, c3 are constants:

> f := c1*ln(u + c2) + c3;

> parameters(c1,c2,c3);

> refresh();

f := c1 ln(u + c2) + c3

c3, c1, c2

(refresh clears remember tables which could still contain unassigned f .) This is exactly Case 2
of loc. cit.

Alternatively, we can declare the expression (5) to be nonzero. After that we get one more
fork very soon, namely:

<15> linear resolving failed for pd(U,u_x)

/ / 2 \2 / 3 \ / 2 \ / 4 \ / 3 \2\

| |d | |d | |d | /d \ |d | /d \ |d | |

|-|--- f| |--- f| - |--- f| |-- f| |--- f| + 2 |-- f| |--- f| | u_x

| | 2 | | 3 | | 2 | \du / | 4 | \du / | 3 | |

\ \du / \du / \du / \du / \du / /

/ d \

|---- U| = -

\du_x /

/ / 2 \2 / 3 \ / 2 \ / 4 \ / 3 \2\

| |d | |d | |d | /d \ |d | /d \ |d | |

|-|--- f| |--- f| - |--- f| |-- f| |--- f| + 2 |-- f| |--- f| |

| | 2 | | 3 | | 2 | \du / | 4 | \du / | 3 | |

\ \du / \du / \du / \du / \du / /

/ d \

u_xx |----- U| +

\du_xx /

/ / 2 \2 / 3 \ / 2 \ / 4 \ / 3 \2\

| |d | |d | |d | /d \ |d | /d \ |d | |

20



|-|--- f| |--- f| - |--- f| |-- f| |--- f| + 2 |-- f| |--- f| |

| | 2 | | 3 | | 2 | \du / | 4 | \du / | 3 | |

\ \du / \du / \du / \du / \du / /

U

FAIL

Maple can solve the condition that the leading coefficient is zero after we rewrite the latter in
the form (

f ′f ′′′

f ′′2

)′
= 0,

which is
f ′f ′′′ = af ′′2,

where a is a constant.

4. For a 6= 1 we get Case 3.

5. For a = 1 we get Case 1.

Another type of failure may be due to nonlinearity of the equation to be solved, which occurs
only if the input equation in total derivatives is nonlinear. It is recommended to avoid solving
nonlinear equations since their solutions tend to be expressions difficult to simplify.

11 Fighting expression swell

Jets has high predisposition to expression swell when running in automatic regime. We already
observed sensitivity to the Varordering, with ordering by degree giving more stable behaviour
than the others.

The succession of unknowns is also significant. The rule to be followed is that unknowns
should be listed in the order of increasing size of their dependence set. E.g.,

dependence(a(x), b(x,u,u_x)):

unknowns(a,b):

is preferable to unknowns(b,a). The reason is that with unknowns(a,b) (the derivatives of) b
will become expressed through (the derivatives of) a rather than the converse.

Four global variables control the data flow in automatic regime. The output of derive and
cc typically contains a large number of expressions. The ressize is a number that determines
the portion of these expressions to become the input of resolve. Namely, expressions are sorted
by size and harvested one by one until the product of their sizes does not exceed the ressize.
The default definition of size ensures that one-term expressions have (nearly) unit size and
therefore all pass to resolve.

The results of resolve also involve expressions of variety of sizes. Expressions of size exceed-
ing maxsize never pass to the output and never generate a ‘resolving failure’ report. Of resolve’s
results only those of size not exceeding putsize are used in substitutions. It makes sense to set
maxsize higher than putsize, because otherwise important ‘resolving failure’ reports could be
missed.
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Finally, Blimit is the threshold of ‘bytes used’ where run will call reduce during every loop.
However, very often the expression swell can be associated with the growing size of numera-

tors, leading to various ‘object too big’ errors. In such cases, one should prefer reverse to count

in Varordering. Transforming the system to another set of variables may be also helpful.

12 Transformation of variables

The procedure transform is suitable for transforming an expression to another set of variables.
For example,

> normal(transform(x = u_x, y = u_y, u = x*u_x + y*u_y - u, u_x));

x

> normal(transform(x = u_x, y = u_y, u = x*u_x + y*u_y - u, u_xx + u_yy));

u_xx + u_yy

-----------------

2

u_xx u_yy - u_xy

is the famous Legendre transformation. Needless to say, the equation should be empty.

13 About declarations

A procedure whose purpose is to change settings of global variables is called a declaration. If
named in plural, it resets the previous declaration of the same type. If named in singular, it has
a cummulative effect. Some declarations exist only in the plural form (e.g., coordinates).

Through a declaration, unassigned names acquire a meaning and become registered. For
example, base and fibre variables are registered names once they are declared through the
coordinates command.

Another possible meaning for a registered name is parameter. The declaration

parameter(c);

c

has the same effect as dependence(c()), but allows c to be still usable as a variable. For instance,

> dependences(f(c,x));

f = {c, x}

> pd(f,c);

d

-- f

dc

Meanings other than ‘variable’ are stored in a special table. The command registered()

prints meanings of all registered names; registered(m) prints all names of the given meaning
m.
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> registered();

c = {parameter}

> registered(parameter);

c

To remove a particular meaning from all names that have it, use clear. For instance

> clear(parameter);

c

> pd(f,c);

Error, pd expects its 2nd argument, p, to be of type ar/count, but received c

14 Storing intermediate results

The command store(filename) has the effect that all assignments to unknowns and their deriva-
tives, all dependence sets, and the set of all expressions declared nonzero, are written to the
specified file. The format is so chosen that the file can be read into another Maple session.

> unknowns(a,b,c):

> a := b + c:

> put(’pd(b,x)’ = 1):

> nonzero(b,c):

> dependence(b(x,u)):

> store(terminal):

storing in terminal

assign({a = b+c})

;

dependence(b = {u, x})

;

put(

pd(b,x) = 1

);

nonzero(b,c)

;

Maple also offers an alternative solution, namely to store the snapshot of memory content
in a file, which is, however, rather useless in case of memory overflow.

15 Computation of coverings

Jets can be useful when computating coverings, albeit not in automatic mode. As an example we
consider the Burgers equation [8, Ch. 6, Section 2.1]. What follows is a commented full record
of computation.

> coordinates([x,t], [u], 3):

The Burgers equation is
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> equation(’u_t’ = u_xx + u*u_x);

u_t = u_xx + u u_x

For further reference, we denote by B the corresponding diffiety.
Recall that Phase I of computation of coverings uses abstract vector fields defined on the

product B̃ = B ×W , where W is an abstract manifold, finite- or infinite-dimensional.
Jets’ objects are vector fields if they are of one of the following three types: a) names declared

as such, i.e., names that have been written among arguments of the command vectorfields;
b) total derivatives; c) partial derivatives; d) commutators of vector fields; e) linear combinations
of the above.

The total derivative with respect to x is denoted by TD[x] (we mean the local one, i.e., one
defined on the diffiety B). It is possible to apply a total derivative to a function f by saying
either

> apply(TD[x],f);

TD(f, x)

or simply

> TD[x](f);

TD(f, x)

E.g., we have

> TD[x](x*t);

t

Of course, no expanded form of the total derivatives is available.
Similarly, pd[u] means the vector field ∂/∂u and can be applied to a function in one of the

following ways:

> apply(pd[u],f);

> pd[u](f);

d

-- f

du

d

-- f

du

The commutator is comm. As expected, Dx commutes with Dt:

> comm(TD[x], TD[t]);

0

It is advisable to alias a shorter name to comm, say C:
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> alias(C = comm);

I, u_xxx, u_xxt, u_xtt, u_ttt, u_xx, u_xt, u_tt, u_x, u_t, C

> C(TD[x], TD[t]);

0

Denoted Ex, Et, the nonlocal (extended) total derivatives D̃x, D̃t on the covering are the
local total derivatives plus the corresponding tails X,T :

> Ex := TD[x] + X;

> Et := TD[t] + T;

Ex := TD[x] + X

Et := TD[t] + T

Now we must tell Jets that X,T serve as tails, i.e., that they are abstract vector fields and,
moreover, purely nonlocal ones. This is done by a single command:

> tail(X,T);

X, T

Tails are distinguished by the property that their action on local variables is zero:

> apply(X,u_xx);

0

Let R be the commutator [D̃x, D̃t]:

> R := C(Ex,Et);

R := TD(T, x) - TD(X, t) + C(X, T)

Vector fields D̃x, D̃t determine a covering if and only if R = 0.
To explain the above formula for R, we note that the second argument g of apply(f,g) can

be a function, but can be also another vector field, in which case the vector field f is applied to
coefficients of the vector field g. E.g.,

> apply(pd[u], u^2*pd[x]);

2 u pd[x]

A tail applied to a local total derivative gives zero:

> apply(T, TD[x]);

0

Therefore, we have

[Dx, T ] = apply(Dx, T )− apply(T,Dx) = apply(Dx, T )

which explains the simplification
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> C(TD[x],T);

TD(T, x)

in the above formula for R. This ends Phase I.
In Phase II we solve the equation R = 0 under some assumptions on the dependence of X,T :

> dependence(X(u,u_x), T(u,u_x));

X = {u_x, u}, T = {u_x, u}

> vars(R);

{u_x, u, u_xxx, u_xx}

> pd(R,u_xxx);

/ d \

-|---- X|

\du_x /

> dependence(X(u));

X = {u}, T = {u_x, u}

> pd(R,u_xx*u_x);

2

d

----- T

2

du_x

> T := T1*u_x + T0;

T := T1 u_x + T0

> tail(T1,T0);

X, T1, T0

> dependence(T1(u),T0(u));

T1 = {u}, T0 = {u}, X = {u}

> pd(R,u_xx);

/d \

T1 - |-- X|

\du /

> T1 := pd(X,u);

d

T1 := -- X

du

> pd(R,u_x^2);

/ 2 \

|d |
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2 |--- X|

| 2 |

\du /

> X := X1*u + X0;

X := X1 u + X0

> tail(X1,X0);

X1, X0, T0

> dependence(X1(), X0());

X1 = {}, T0 = {u}, X0 = {}

> pd(R,u_x*u^2);

3

d

--- T0

3

du

> T0 := T02*u^2 + T01*u + T00;

2

T0 := T02 u + T01 u + T00

> tail(T02,T01,T00);

T00, T01, X0, T02, X1

> dependence(T02(), T01(), T00());

X1 = {}, T02 = {}, T01 = {}, T00 = {}, X0 = {}

> pd(R,u_x*u);

2 T02 - X1

> T02 := 1/2*X1;

T02 := 1/2 X1

> pd(R,u_x);

T01 - C(X1, X0)

> T01 := -C(X0,X1);

T01 := C(X1, X0)

> F := collect(R,u);

2

F := (- 1/2 C(X1, X0) + C(X1, C(X1, X0))) u
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+ (-C(T00, X1) + C(X0, C(X1, X0))) u - C(T00, X0)

Coefficients at the powers of u give the three equations (2.8), loc. cit., albeit in different notation:
A = X1, B = X0, C = T00. This ends Phase II.

In Phase III we choose the space W coordinatized by nonlocal variables. One-dimensional
coverings have one nonlocal variable, which we denote w:

> nonlocal(w);

w

We restrict our demonstration to the case X1 = A 6= 0. Then we can put X1 = ∂/∂w (see loc.
cit.), therefore:

> X1 := pd[w];

X1 := pd[w]

> X0 := b*pd[w];

X0 := b pd[w]

> T00 := c*pd[w];

T00 := c pd[w]

> dependence(b(w), c(w));

b = {w}, c = {w}

and insert into F above:

> G := collect(F, u, expand);

/ / 2 \ \

| /d \ |d | | 2

G := |- 1/2 |-- b| pd[w] + |--- b| pd[w]| u

| \dw / | 2 | |

\ \dw / /

/ / 2 \ \

|/d \ |d | /d \2 |

+ ||-- c| pd[w] + b pd[w] |--- b| - |-- b| pd[w]| u

|\dw / | 2 | \dw / |

\ \dw / /

/d \ /d \

- c pd[w] |-- b| + b |-- c| pd[w]

\dw / \dw /

Coefficients at the powers of u provide us with the three expressions found in loc. cit.:
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> coeff(coeff(G,u,2), pd[w]);

/ 2 \

/d \ |d |

- 1/2 |-- b| + |--- b|

\dw / | 2 |

\dw /

> coeff(coeff(G,u,1), pd[w]);

/ 2 \

/d \ |d | /d \2

|-- c| + b |--- b| - |-- b|

\dw / | 2 | \dw /

\dw /

> coeff(coeff(G,u,0), pd[w]);

/d \ /d \

-c |-- b| + b |-- c|

\dw / \dw /

One-dimensional coverings correspond to functions b, c such that the above expressions are zero.
It is now a matter of routine to find them (see loc. cit. for the final result).

16 Zero-curvature representations

Jets originated as a tool to compute zero-curvature representations in automatic regime using
the method described in [3]. We introduce the commands to perform the task by means of
example of the mKdV equation:

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

> coordinates([t,x],[u],12):

> equation(’u_t’ = u_xxx - 6*u^2*u_x);

2

u_t = u_xxx - 6 u u_x

> A := matrix(2,2, [a1,a2,1,-a1]);

> B := matrix(2,2, [b1,b2,b3,-b1]);

> R := matrix(2,2, [r,0,0,-r]);

[a1 a2 ]

A := [ ]
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[1 -a1]

[b1 b2 ]

B := [ ]

[b3 -b1]

[r 0 ]

R := [ ]

[0 -r]

The matrix R is the characteristic matrix of [3] in the normal form with respect to conjugation
(the Jordan normal form). The matrix A is in the normal form with respect to gauge equivalence
due to the stabilizer of R.

> S := zero_curvature(x = A, t = B, 1 = R):

> unknowns(a2,a1,b3,b2,b1,r):

> dependence(a1(u,u_x,u_xx), a2(u,u_x,u_xx),

b1(u,u_x,u_xx), b2(u,u_x,u_xx), b3(u,u_x,u_xx),

r(u,u_x,u_xx)):

> nonzero(a2,r):

We assume a2 to be nonzero since otherwise the zero-curvature representation comes out as
lower-triangular, hence equivalent to a couple of conservation laws. After a while, run(S) stops
at:

> run(S);

...

<25> Put:

3

d

--- b2 = 0

3

du

2 2 2 /d \

b2 = 4 a2 + 4 a2 a1 - 6 u a2 - 2 a2 |-- a1| u_x

\du /

<27> resolving failed for pd(a1,u) nonlinear

/d \2

|-- a1| - 1

\du /

<27> linear resolving failed for pd(a1,u)
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/d \

|-- a1| a1 = u

\du /

FAIL

We end up with two simple nonlinear equations easy to solve: a1 = u, which immediately leads
to the well-known zero-curvature representation of mKdV with a2 as a parameter (the spectral
parameter):

> a1 := u;

a1 := u

> run(S);

<2> Success!

> dependence();

a2 = {}, r = {}

> map(eval, op(A));

[u a2]

[ ]

[1 -u]

> map(expand@eval, op(B));

[ 3 2 2 ]

[u_xx - 2 u + 4 u a2 4 a2 - 2 u a2 - 2 a2 u_x]

[ ]

[ 2 3 ]

[2 u_x - 2 u + 4 a2 -u_xx + 2 u - 4 u a2 ]

Other features

Jets contains a number of other undocumented procedures. See Jets.s for their definitions.

License

Jets is a freeware, distributed under the GNU General Public License as published by the
Free Software Foundation <http://www.gnu.org/copyleft/gpl.html>. In particular, it is dis-
tributed without any warranty, just in the hope that it will be useful. Whenever results of your
scientific work depend on this software, you should consider making a proper reference [4].
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